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Impact of dust aerosol heating on deep convective cloud system
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Collaborative Innovation Center for Western Ecological Safety, Key Laboratory of Semi-arid
Climate Changes with the Ministry of Education, Lanzhou University, Lanzhou 730000, China

Abstract: Based on a dynamic model, we analyzed the impact of dust aerosol heating on the stability in
the surrounding atmosphere, cumulus convection and precipitation in deep convective weather systems
with sufficient water vapor. The results show that when dust aerosols are transported to deep convec-
tive systems with sufficient water vapor at a height of 550 hPa, dust heating effect will warm the atmo-
sphere, enhance disturbance development, reduce atmospheric stability, and promote cumulus convec-
tion development and its latent heat release. Cumulus convection will cause convective heating and vor-
ticity mixing, which will lead to strong vertical motion and further strengthen cumulus convection. This
positive feedback process makes the entire deep convective weather system more unstable. The strength
of positive feedback will increase as the disturbance horizontal scale decreases. The strong vertical mo-
tion caused by vorticity mixing can transport dust in cumulus clouds from low to high levels. When dust
exists at both 550 and 950 hPa heights at the same time, the heating effects of high and low layers will
jointly accelerate the instability process of deep convective weather systems, among which the role of
high-level dust is more significant.
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