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Abstract Based on a brief review of the research progress on surface potential vorticity (PV), this study introduces the
calculation of PV and its generation on complex terrain and the research progress on the source of PV and PV circulation
(PVC) in recent years, focusing on the particularity of the surface PV on the Tibetan Plateau (TP) and its important
influence on weather and climate. For adiabatic and frictionless atmospheric motion, the structural recombination of the
PV (i.e., PV reconstruction) can cause the development of vertical vorticity, which can cause the formation of a plateau
vortex in summer and make the eastern part of the plateau an important source of surface vorticity in winter. Based on the
derived equation for the vertical motion associated with isentropic displacement (wip), which includes the impact of
diabatic heating, this study shows that the eastward propagation of the positive vorticity generated on the TP along the
westerly wind will cause the development of cyclonic vorticity in the downstream area, southerly wind, and upward
motion in the lower troposphere, resulting in the increase in PV advection with altitude, which stimulates the development
of extreme weather and climate events. Notably, the diurnal variations of surface heating and latent heat release at the
cloud bottom over the TP significantly affect the diurnal variation of the PV near the surface, resulting in the development
of the low vortex and precipitation system over the TP from late afternoon to night. Compared with the traditional surface
sensible heating index, the surface PV index of the TP can better characterize the seasonal changes of local precipitation
and is more closely related to the Asian summer monsoon precipitation.

The concept of PVC is also briefly introduced. Because changes in convergence of PVC across the close boundary of a
region are directly related to changes in PV of the region, to maintain the relative stability of the total PV in the Northern
Hemisphere, changes in PVC on the trans-equatorial plane and those in surface PVC must complement each other. Thus,
changes in PVC on the trans-equatorial plane can be considered a window for monitoring near-surface climate change.
The near-equatorial air—sea interaction can directly cause changes in the vertical shear of the zonal wind on the vertical
plane along the equator, stimulating the trans-equatorial PVC anomaly, thereby affecting climate change near the surface
of the Northern Hemisphere through the change of PVC in the atmosphere and the regulation of the TP. This study shows
that PVC analysis opens up a new way for establishing the link between tropical and extratropical atmospheric circulation

changes and has broad application prospects.
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Fig. 1 Undulating bottom surface of the atmosphere in the longitude—
potential temperature (4, 0) plane. Intersections between the isentrope
and Earth’s surface are labeled as 4;, where j = 1, 2, 3, -+, 2n. Cited
from Koh and Plumb (2004) and redrawn.
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Fig.2 (a) A surface cyclone—anticyclone pair in northern midlatitudes,
where geostrophic winds are indicated by arrows and surface isentropes
are represented by dashed contours; (b) earth’s surface in a vertical
cross-section at a constant latitude (dash-dotted line in Fig.a) in 6

coordinates. Cited from Koh and Plumb (2004) and redrawn.
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Fig. 3 Schematic distributions of isentropic surfaces (units: K) and the upper-level, middle-level, and lower-level atmosphere. The bold dashed line

indicates the dynamic tropopause with potential vorticity (PV) equal to 2 PVU (1 PVU=10 *K m’ kg71 sfl). Modify according to Hoskins (1991); Wu

(2016)”; Sheng et al. (2022).
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Fig. 4 Climate distribution corresponding to the area-weighted column integration of each term in the budget equation for gross PV in the Northern
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Fig. 5 Ratio of the 85°-95°E mean absolute horizontal component of the surface PV to the absolute vertical component in winter and summer.
(a) MERRA2 and (b) FAMIL2 results. The gray lines (28°E, 38°E) indicate the edges of the southern and northern Tibetan Plateau (TP) slopes. Cited
from Sheng et al. (2021).
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I RRT I S (PR —A&Rdb) M. /K
Sy FEE A0 DR F S 5 T () A o T LT D 5
FUNGR, 26 H7E & IR T B A7 B AL A7 5 H I A
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51 H Wuetal. (2022),

Fig. 6 Cross-section along the airflow direction of potential
temperature (black contours; units: K), horizontal vorticity (shading;
units: m's ' Pa'), and wind (white vectors; units: m s ') at (a) 1800 LT
26 June (local time in Lhasa, the same below), (b) 1800 LT 27 June,
and (c) 0000 LT 28 June. The right-hand panel shows the vertical
profile of the horizontal wind U (perpendicular to the cross-section) at
the location upstream of the vortex, as indicated by the purple dot-
dashed line in the left-hand panel. The location of the white dashed line
represents the vortex center. Black shading denotes the Tibetan Plateau.
A0 and A represent the locations of the initial and down-sliding points,

respectively. Cited from Wu et al. (2022).
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{O: Cyclonic circulation anomaly
=p : passing- plateau flow

: isentropic contour

=—: isobaric surface

t: Vertical velocity
=): Positive zonal PV advection
—=: Negative meridional PV advection

M : positive PVanomaI —

Bl 7 5 (TP My X Az is BA K SRR AR BE (ST A P T AR s 2 B BB I TP AR AR I At He & il
&R W, PR IEA RS, JRAE TP ML G R /NM . BB I BT A B s, 1A R RS B IR B e el o X h
SR AR AR B S N b 10 e A 2 o R AT e U W - N o W w11 7/ NP 1 230 1 P 2 R Al 2 W A 282 A R U
SERTLIE R, AR . TEEDEE AP ORRIEE . BB IV @A ALRFR S A AL R O E A, SRR LS B
55, FEKED. 518 Wuetal. (2020).

Fig. 7 Schematic of PV restructuring in the TP region and the impact of PV advection on downstream circulation during different stages (ST) of
cyclogenesis. Stage I: surface airflow convergence in the lee of the TP increases local PV substance W, generating a positive relative vorticity anomaly
and initiating light rain near the TP. Stage II: eastward moving positive vorticity anomaly is intensified because of reduced static stability. Positive
zonal PV advection in the mid-troposphere and increased southerly and negative meridional PV advection below enhance cyclogenesis, air ascent, and
precipitation. Stage III: negative meridional PV advection is located immediately below the center of strong positive zonal PV advection, and cyclonic
vorticity, vertical velocity, and precipitation reach their peaks. Stage IV: negative meridional PV advection tends to overlay the positive center of zonal

PV advection. Consequently, the cyclone and air ascent are weakened, and precipitation is diminished. Cited from Wu et al. (2020).
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Fig. 8 Schematic showing the interaction among different omega components and feedback of diabatic heating on horizontal PV advection:

(a) Triggering of cyclogenesis and ascending wip by PV advection; (b) triggering of isentropic upgliding wind (71G ET/)ID) and convergence due to

the development of ascending wip and generation of wjg owing to the slope of the isentropic surfaces; (c) generation of wg associated with moisture

transport (Vq) and intensification of cyclogenesis due to negative PV advection. Brown dashed arrows denote the positive (superscript +) and negative

(superscript —) feedback mechanisms, and red solid and dashed arrows denote the positive (superscript +) and negative (superscript —) feedback of

latent heating on wip, respectively. Cited from Wu et al. (2020).
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Fig. 9 Diurnal cycles of (a) PV (units: PVU) and (b) diabatic heating (units: 10°K sil) at 550 (red line), 500 (purple line), and 450 hPa (black line),

averaged over the central TP area (31°-37°N, 85°-96°E) , during the 2020 Meiyu period. The green solid and dashed lines in Fig. a denote the

precipitation (units: mm h') obtained from the GPM and ERAS (values multiplied by a factor of 0.5) datasets, respectively, and the blue line denotes

the cloud data from FY-2G. Cited from Ma et al. (2022).
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Fig. 10 25°-40°N mean annual cycle of (a) precipitation (units: mm dfl); (b) surface sensible heat flux (units: W mﬁz); (c) surface potential vorticity

(units: PVU) averaged from 1979 to 2019. Cited from He et al. (2022).
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Fig. 11 Climatic state averaged from 1980/1981 to 2020/2021 of zonal mean potential vorticity (/, shading, units: 107K ms kgfl) and potential

vorticity circulation (streamline, units: K ms ' Pa ', K s ) during the boreal winter.
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Fig. 12 (a) Normalized time series of spring CEPVTI; (b) regression coefficients of SAT against the CEPVTI during boreal spring (shading, units:

°C). Areas exceeding the 0.05 significance level are denoted using black dots. Cited from Sheng et al. (2022).
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Fig. 13 Distribution of the correlation coefficients between the latitudinal circulations (vectors) during boreal spring together with potential vorticity
circulation (shading) along the equatorial section and (a) CEPVTI and (b) Nifio34. Vectors exceeding the 0.05 significance level are shown. Areas

exceeding the 0.05 significance level are denoted by black dots. Cited from Sheng et al. (2022).
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