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Abstract
Global temperature change is strongly affected by internal climate variability (ICV).

The temporal change of the ICV on the decadal to multi-decadal scales is referred as

the decadal modulated oscillation (DMO) that plays a dominated role in the occurrence

of enhanced warming and warming hiatus. However, investigation on the DMO in

modern historical period has received limited attention. In this study, the ensemble

empirical mode decomposition (EEMD) method was applied to the surface air temper-

ature (SAT) during the boreal cold season to extract the DMO signal in the past cen-

tury. Two most sensitive areas of DMO trend over northern Eurasia and northwestern

North America were identified and used to build a time series of regionally enhanced

DMO. It showed an obvious decadal periodic oscillation at 11–23 years and exhibited

increasing amplitude. In addition, regression analysis using Niño3.4, Pacific Decadal

Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO), and Arctic Oscillation

(AO) revealed a major role of the AO in DMO over the mid-to-high latitudes in the

Northern Hemisphere (NH). However, such strong oscillation signal has not been

detected in most of the Coupled Model Intercomparison Project Phase 5 (CMIP5)

models, and the extracted regionally enhanced DMO are capable of improving the pre-

dictability of SAT over the mid-to-high latitudes in the NH.
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1 | INTRODUCTION

The carbon dioxide in the atmosphere has increased mono-
tonically over the past century (Stocker et al., 2013) and is
considered to be responsible for global warming. However,
global mean surface air temperature (SAT) did not rise sig-
nificantly since the late 1990s, which contradicted the global
warming theory based on greenhouse gas increase (Stocker
et al., 2013; Steinman et al., 2015; Huang et al., 2016; Guan
et al., 2017; Liu and Zhou, 2017). This decadal signal of
cooling phenomenon drew the attention of the public
(Easterling and Wehner, 2009; Kaufmann et al., 2011; Li
et al., 2015), and was named global warming hiatus (Fyfe
et al., 2013).

So far, numerous studies have explored the mechanisms
of the warming hiatus and revealed it is strongly correlated
with the internal climate variability (ICV; Kosaka and Xie,
2013; Dai et al., 2015; Guan et al., 2015a; Fyfe et al., 2016;
Huang et al., 2016; Meehl et al., 2016; Liu and Zhou,
2017), such as the Inter-decadal Pacific Oscillation
(L'Heureux et al., 2013; Dai et al., 2015; Meehl et al.,
2016), the cooling of the La Niña-like event (Kosaka and
Xie, 2013), the negative phase of the North Atlantic Oscilla-
tion (NAO; Higuchi et al., 1999; Huang et al., 2006; Luo
et al., 2015), and the neutral Atlantic Multi-decadal Oscilla-
tion (AMO; Wyatt et al., 2012; Tung and Zhou, 2013). On
the other hand, from the view of energy balance, a few stud-
ies indicated that heat was stored in the deeper Atlantic
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Ocean and southern oceans during the warming hiatus
(Chen and Tung, 2014; 2016; Xie et al., 2017).

To better understand global climate change, an increasing
number of scholars have explored the SAT change over the
past hundred years on global and regional scales (Huang and
Liu, 2000; Hansen et al., 2006; Zhang et al., 2011; Li et al.,
2012). However, most of these studies used traditional statis-
tical methods to analyse temperature variability, such as sim-
ple linear fitting based on least squares estimator that
calculates the variation trend only at a constant rate. It is
generally accepted that the temperature change is nonlinear
and non-stationary (Huang et al., 1998; Wu et al., 2007;
Chen et al., 2016). Traditional statistical method such as
time-unvarying linear trend cannot effectively reveal the
potential features of temperature variability (Ji et al., 2014).

Actually, other methods exist, which can avoid the short-
coming of linear methods to show non-stationary and
nonlinear characteristics of the data, such as the ensemble
empirical mode decomposition (EEMD) method that pro-
posed by Wu and Huang (2009). The effectiveness of
EEMD is based on improvement of the traditional empirical
mode decomposition (EMD) method (Huang et al., 1998)
and has been gradually applied extensively in climate and
oceans studies (Qian et al., 2009; 2011a; Bai et al., 2014; Ji
et al., 2014; Zhang et al., 2016; Li et al., 2017; Shan et al.,
2017). For example, Qian et al. (2011a) studied the multi-
timescale variability of SAT in China; Zhang et al. (2016)
analysed aerosol trends and rates of change; Li et al. (2017)
presented extensive tests from several different aspects to
validate the effectiveness of predicting the sea surface tem-
perature; and Shan et al. (2017) investigated the modulated
annual cycle (MAC) of the Indo-Pacific warm pool (IPWP)
heat centre location, all using the EEMD method.

Recently, Huang et al. (2016) extracted the oscillation
components of ICV on the decadal to multi-decadal scales
and referred it as the decadal modulated oscillation (DMO).
The term of DMO denotes the modulation effects of oceanic
ICV modes and Arctic on the SAT change at decadal to
multi-decadal time scales. It affects the SAT through chang-
ing the asymmetric meridional and zonal thermal forcing
(MTF and ZTF, respectively; Huang et al., 2016; Guan
et al., 2017). However, some important aspects of the DMO
are still unclear, such as how the DMO changed in the past
115 years (1901–2015) and its effect on climate change. In
this study, we utilized the EEMD method to extract the
DMO signal of SAT and built a regionally enhanced DMO
based on sensitive areas to analyse its long-term periodic
variation. This paper is arranged as follows. The details of
the data sets and the methodology used are given in
section 2. Our findings are provided in section 3, and con-
clusions and discussions are presented in section 4.

2 | DATA AND METHODS

2.1 | Data sources

In this study, we used monthly mean SAT data from the Cli-
matic Research Unit (CRU) time series data set (version
4.01), provided by the University of East Anglia (Harris
et al., 2014), to investigate the temperature change during
the cold season (November to the following March). The
data set covers the period from 1901 to 2016 with a high
spatial resolution of 0.5 × 0.5�. In addition, to explore the
atmospheric circulation effects on the DMO, we selected
four classic climate indexes of Niño3.4, Pacific Decadal
Oscillation (PDO), AMO, and Arctic Oscillation (AO),
which were downloaded from the Climate Explorer (http://
climexp.knmi.nl/).

To assess the performances of climate models in simulat-
ing DMO, we used outputs from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) models. The
CMIP5 experiments (Taylor et al., 2011) include simulations
of 20th-century climate (referred as historical experiments)
and of 21st-century climate under new greenhouse gas emis-
sion scenarios (referred as representative concentration path-
ways [RCPs]; Meinshausen et al., 2011). The RCPs
represent different emission pathways according to assumed
policy decisions, which would influence the future emissions
of greenhouse gases, aerosols, ozone, and land-use changes
(Bannister et al., 2017). In this study, the outputs for temper-
ature from the historical simulations of 19 models were
selected (Table 1), together with their RCP4.5 outputs runs
from 2005 to 2015, to compare with the observational data
set. In order to be consistent with the observational data set,
all model outputs were interpolated onto the 0.5 × 0.5� grid,
and the temperature anomalies in models were calculated
with respect to the mean from 1961 to 1990.

2.2 | Methods

The EEMD method is applied to decompose the time series
of SAT in this study. It is a new time series signal processing
method, and suitable for non-stationary and nonlinear signal
detection, which can decompose the original signal into
oscillations at different time scales (intrinsic mode function
[IMF]) and the trend component (Wu and Huang, 2009;
Chen et al., 2016). In the calculation process of using
EEMD method, the noise added to data has an amplitude
that is 0.2 times the standard deviation of the raw data, and
the ensemble number is 400. Considering that the EEMD
method has an end effect (Qian et al., 2011b), we need to
eliminate the minor influence of end effect on our results,
the first and last years of all the decomposed results are
excluded. Moreover, the temperature data from the CRU
used in this study cover the period from 1901 to 2015; the
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first and last years of all the decomposed results via the
EEMD method are excluded, leaving the period of
1902–2014 for further analysis.

Note that the “trend” used in this paper refers to the linear
trend over a specific period, which is calculated by the least
squares method and may not refer to the long-term trend.
The “long-term trend” in this paper refers to the linear trend
over past 115 years from 1901 to 2015.

3 | RESULTS

According to the IPCC AR5, during the global warming
over past 100 years, the temperature during cold season

exhibited the largest warming trend when compared to that
during the other seasons, and also showed a more obvious
cooling trend in recent decades when compared with that
during warm season (Huang et al., 2016). The temperature
variability in the cold season is more closely associated with
atmospheric circulation than that in summer. Thus, further
research on the SAT change during the boreal cold season is
needed. We first calculated the time series of SAT anomaly
in terms of the cold season from 1901 to 2015 over the NH
land (Figure 1). It shows a distinct downtrend during
2001–2013, which was much different from the enhanced
warming in the previous decade. Hitherto, the dominant
mechanism that has been proposed to understand the temper-
ature variability, is the effects of ICV, which has been
increasingly investigated in recent years (Crétat et al., 2011;
Crétat and Pohl, 2012). Huang et al. (2016) extracted the
ICV of SAT on the decadal to multi-decadal time scales in
the cold season and proposed that the cooling phase of ICV
was responsible for the warming hiatus (Guan et al., 2017).

To verify the effect of ICV on temperature change over
the NH land, we applied the EEMD method to decompose
the time series of SAT anomaly in the cold season over the
NH land during 1901–2015, and obtained five IMF compo-
nents (C1–5) and long-term trend (R) (Figure 2; Wu et al.,
2011; Ji et al., 2014). The five IMF components reflect the
fluctuation characteristics from high to low frequency at dif-
ferent time scales, which are thought to be induced mainly
by the ICV (Wu et al., 2011; Wallace et al., 2012; Smoliak
et al., 2015; Guan et al., 2015a). The oscillation cycles of C1

and C2 are about 3 and 7 years, respectively. The oscillation
cycles of C3, C4, and C5 are about 14, 20, and 70 years,
respectively. The long-term trend is closely associated with
radiative forcing (Wu et al., 2011; Guan et al., 2015b).

TABLE 1 Summary of CMIP5 models used in this study

Model name Modelling centre

CanESM2 Canadian Centre for Climate, Canada

CCSM4 National Center for Atmospheric
Research, United States

CNRM-CM5 Centre National de Recherches
Meteorologiques, France

CSIRO-Mk3.6 Commonwealth Scientific and Industrial
Research, Australia

GFDL-CM3 Geophysical Fluid Dynamics Laboratory,
United States

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory,
United States

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory,
United States

GISS-E2-R NASA Goddard Institute for Space
Studies, United States

HadGEM2-CC Met Office Hadley Centre, UK

HadGEM2-ES Met Office Hadley Centre, UK

INM-CM4 Institute for Numerical Mathematics,
Russia

IPSL-CM5A-LR Institute Pierre-Simon Laplace, France

IPSL-CM5A-MR Institute Pierre-Simon Laplace, France

MIROC5 Atmosphere and Ocean Research
Institute, Japan

MIROC-ESM Japan Agency for Marine-Earth Science
and Technology, Japan

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science
and Technology, Japan

MPI-ESM-LR Max Planck Institute for Meteorology,
Germany

MRI-CGCM3 Meteorological Research Institute, Japan

NorESM1-M Norwegian Climate Centre, Norway

Note. Both historical runs for the period 1901–2005 and future scenario RCP4.5
runs from 2006 to 2015 are used. NH cold season
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FIGURE 1 Regional-mean time series of SAT anomaly relative
to 1961–1990 over the Northern Hemisphere land for the cold season.
The red line is the linear trend for 1980–2000; and the blue line for
2001–2013. Note that the boreal cold season spans from November to
the following March [Colour figure can be viewed at
wileyonlinelibrary.com]
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According to the IMF components of different oscillation
cycles, we reconstructed the inter-annual variability, inter-
decadal variability, and the long-term trend of the SAT
anomalies. The inter-annual temperature variability was
obtained by using the sum of IMFs C1 and C2; the inter-
decadal temperature variability by using the sum of IMFs
C3, C4, and C5; and the long-term trend is the residual (R).
As illustrated in Figure 3, compared with the original tem-
perature anomaly, the reconstructed inter-annual temperature
variability represents the fluctuation of high-frequency sig-
nals, and the reconstructed inter-decadal temperature vari-
ability fully reflects the overall trend of the temperature
variability on the decadal to multi-decadal time scales from
1902 to 2014. Since the amplitude of the inter-decadal tem-
perature variability is comparable to that of the long-term
trend on the decadal to multi-decadal time scales, the inter-
decadal temperature variability enhances or suppresses the

long-term trend at the decadal time scale. For instance, dur-
ing the accelerated warming period in 1985–1998, the inter-
decadal temperature variability was in an upwards phase and
enhanced the uptrend of the long-term trend. On the con-
trary, when the inter-decadal temperature variability was in a
downwards phase since 2000, it balanced or reduced the
radiatively forced warming (the long-term trend; Guan et al.,
2015b) and resulted in the warming hiatus over the NH land.
Based on the above analysis, we conclude that the sum of
IMFs C3, C4, and C5 can represent the inter-decadal variabil-
ity of SAT over the NH land, and it is defined as the DMO
following Huang et al. (2016). In the remainder of this
paper, we extract the DMO signal from raw SAT in the
same way.

Figure 4 compares spatial maps of DMO (Figure 4a) and
SAT trends (Figure 4b) in boreal cold season in response to
the warming hiatus. Most areas experienced a decreased
trend of DMO, and two obvious decreasing centres where
the DMO trend was less than −2�C for 13 years were
located in northern Eurasia (Kazakhstan, northwestern
Russia, and northeastern China) and northwestern North
America (western Canada and Alaska). Meanwhile, it shows
small positive trend over northeastern Russia, eastern United
States, eastern Canada, and Greenland. Compared with
Figure 4a, the spatial distribution of SAT trend (Figure 4b)
exhibits a similar pattern as that of DMO, with a smaller
amplification in most of the downwards trend areas, such as
Russia and North America. Positive trend of SAT was
observed in northern Africa and western Europe, and the
uptrend was remarkably stronger than that of DMO, which
was induced by strong local warming effect from radiative
factors (Guan et al., 2015b; Zhang et al., 2017). Based on
the above, we analysed the effects of DMO on SAT from
two sides, the temporal evolution and spatial distribution.
Results demonstrate that DMO dominated the SAT variation
over the past century, especially during the recent warming
hiatus period.

Because of the key role of DMO in temperature change,
we further explored the long-term variation of DMO in the
past century. Figure 4a indicates that most areas experienced
a decreasing trend of DMO in the NH during the warming
hiatus period. In particular, two obvious decreasing centres
located in northern Eurasia (Kazakhstan, northwestern
Russia, and northeast China) and northwestern North Amer-
ica (western Canada and Alaska) made the largest contribu-
tion to the cooling over the NH. Based on these two major
contribution areas, we built a time series of regionally
enhanced DMO to explore the long-term variation of DMO
in the past century.

Figure 5 shows a time series of regionally enhanced
DMO from 1902 to 2014, it appears a strong decadal vari-
ability with periodic oscillation around 11–23 years. The
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FIGURE 2 EEMD decomposition of the time series of mean
SAT anomaly in the cold season over the NH land. C1–C5 represent
five IMFs from high to low frequency, while R represents the long-
term trend
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FIGURE 3 EEMD-decomposed raw SAT anomalies (bar) for the
long-term trend component (red dashed line), inter-decadal component
(blue curve), and the inter-annual component (black curve) [Colour
figure can be viewed at wileyonlinelibrary.com]
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peak values were stable about 0.9�C, and the trough values
gradually decreased from −0.5 to −1.4�C, which implied an
intensified oscillation. During the accelerated warming
period of 1980–2000, DMO had a notably bigger trough
value than in both the previous cycle (before 1980) and the
following cycle (after 2000), which was only down to about
0�C. It indicated that DMO's downtrend was not enough to
offset the warming effect of greenhouse gases, which
became an additional contribution to the accelerated
warming. During 2000–2011, the DMO rapidly dropped
from peak to trough, which contributed to the warming hia-
tus. Beginning in 2012, the DMO reversed. It is striking to

see that the rising of DMO during 2012–2014 was faster
than any uptrend since 1902. These characteristics indicate
that DMO arrived at new peaks of both negative and positive
phases, causing an intensified oscillation on the decadal time
scale.

Since the DMO change is strongly linked to global-scale
climate variability, we further explored the modulated
effects of oceanic ICV on DMO. Four classic climate
indexes (PDO, AMO, Niño3.4, and AO) were selected to
regress the time series of regionally enhanced DMO during
1950–2014. First, we applied the EEMD method to decom-
pose each index and obtain six IMFs, respectively. Then, we
selected IMFs 3, 4 and 5 of each index to regress the region-
ally enhanced DMO by using the stepwise multiple linear
regression (MLR) method. The regressed regionally
enhanced DMO shown in Figure 6 can be expressed as
follows:

DMO=−0:29+1:26PDO4+3:12AMO3+0:74Ni~no3:44

+1:68Ni~no3:45+1:46AO3−2:09AO4+2:11AO5:

The regression-based approximation of DMO component
can explain 80% of its variance using classic oceanic ICV
modes: PDO, AMO, Niño3.4, and AO with contributions of
14, 4, 16, and 66%, respectively. Figure 6 compares the time
series of the regressed DMO with the observed regionally
enhanced DMO. It is found that the regressed DMO captures
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FIGURE 4 Spatial distribution of
the linear trend for 2001–2013 in the
boreal cold season of the (a) DMO and
(b) SAT [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 5 Time series of regionally enhanced DMO during
1902–2014 based on two most significant downwards trend areas of
northern Eurasia and northwestern North America [Colour figure can
be viewed at wileyonlinelibrary.com]
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the major variation features of the observed regionally
enhanced DMO, with the largest contribution from the AO.

Numerous studies have shown that the AO plays an
essential role in climate change over mid-to-high latitudes of
the NH on inter-annual to decadal time scales (Thompson
and Wallace, 1998; 2001; Gong and Ho, 2003). Thompson
and Wallace (2001) pointed out that the AO signal is
strongly coupled to SAT over the Eurasian continent in win-
ter. Gong and Wang (2003) demonstrated that the significant
relationship between the AO and precipitation in winter over
China. The AO signal is closely related to lower tropo-
spheric circulations, such as the East Asian winter monsoon,
the Aleutian Low, and the Siberian High (Gong et al., 2001;
Wu and Wang, 2002). In addition, the AO also showed mar-
ked impacts on extreme weather events (Thompson and
Wallace, 2001; Wettstein and Mearns, 2002; Mao et al.,
2011), including blocking and cold air activities in the NH
(Thompson and Wallace, 2001), extreme temperatures in
northeastern United States and in Canada (Wettstein and
Mearns, 2002).

In the last few decades, the Arctic region experienced an
enhanced and accelerated warming (Serreze et al., 2009),
which is termed as the Arctic amplification (AA; Holland
and Bitz, 2003). A number of studies suggested that the AA
effect of the Arctic region has been highly correlated to fre-
quent extreme weather events across the mid-latitudes in the
NH (Overland and Wang, 2010; Hopsch et al., 2012). Three
potential dynamical pathways linking the AA to mid-latitude
weathers have been revealed, including changes in storm
tracks, the jet stream, and planetary waves along with their
associated energy propagation (Cohen et al., 2014).

Besides the AO effect, the recent warming hiatus was
also influenced by decadal variability in the Pacific Ocean
(Kosaka and Xie, 2013; Dai et al., 2015). Kosaka and Xie
(2013) pointed out that the classic Pacific variability related
to the recent warming hiatus was mainly the La Niña-like
cooling induced by accelerated trade winds. Dai et al.

(2015) concluded that the Inter-decadal Pacific Oscillation
(IPO) was largely responsible for the recent slowdown of
warming. However, such influence from the Pacific Ocean
is limited to the North America generally.

Considering that the global climate models are useful
tools for investigating climate change, we utilized the
CMIP5 models to reveal the key role of DMO in SAT. Note
that multi-model ensemble strategy is traditionally used to
exploit the diversity of skilful predictions by different
models (Xu and Xu, 2012; Zhang, 2012), but this method
does not consider the relative strength and weakness of each
model as an ensemble invariably hides the substantial varia-
tion among individual models (Bannister et al., 2017). In
addition, the internal variability of different models might be
offset or strengthened through ensemble mean. Conse-
quently, we focused on intercomparison between individual
models and their individual merits in this study.

The outputs of 19 CMIP5 models were used to generate
time series of regionally enhanced DMO based on the two
most sensitive areas observed over northern Eurasia and
northwestern North America, as shown in Figure 7. There
are large differences in phase variation and amplitude among
simulated DMO signals. Correlation coefficients between
simulated and observed DMO are given in Figure 8. Only
four out of the 19 models showed a significant relationship
and passed the 99% confidence level, in which only CSIRO-
Mk3.6 (0.28) and HadGEM2-ES (0.28) have positive corre-
lations while HadGEM2-CC and INM-CM4 reveal signifi-
cant negative correlations.

Given the closest DMO in CSIRO-Mk3.6 and
HadGEM2-ES simulations to the observation, we compared
the observed area-average SAT in two most sensitive areas
(i.e., northern Eurasia and northwestern North America) with
simulated area-average SAT of the above two models
(Figure 9a). The observed SAT exhibited a clear increase
from 1950 until the early 1960s, but it decreased during the
period 1960–1970. In addition, there was a continuous rise
in SAT from 1970 until 2000, which reached a new level of
about 1�C higher. Thereafter, the SAT started a new oscilla-
tion with a smaller amplitude and shorter cycle than those
before 1980. However, the simulated SAT of the two models
exhibits a rather flat change, which shows that the simulated
time series are considerably smoother than the observed
SAT curve. Both models simulated the opposite trend during
1950–1970 compared to the observed SAT trend. Beginning
in 1970, although the simulated SAT showed an increase,
the uptrend was smaller than that of the observed SAT. Dur-
ing the warming hiatus, HadGEM2-ES simulated a larger
downtrend than the observed SAT, while CSIRO-Mk3.6 still
simulated an increase in SAT. Therefore, we conclude that
these models cannot capture the basic phase variation and
amplitude of the observed SAT.
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FIGURE 6 Time series of regionally enhanced DMO component
(blue), and regressed DMO using the decadal variability of the PDO,
AMO, Niño3.4, and AO indexes (red) [Colour figure can be viewed at
wileyonlinelibrary.com]
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Once we replaced the simulated DMO with the observed
regionally enhanced DMO and added it to the simulated C1,
C2, and R to obtain the “hybrid” SAT, as shown in
Figure 9b, the improvement of the “hybrid” SAT becomes
obvious: the phase variation on the decadal time scale and
the amplitude of the “hybrid” SAT are broadly comparable
to the observations. In addition, CSIRO-Mk3.6 shows an
amplitude that is closer to the observation than
HadGEM2-ES, especially after the late 1970s. That is to say,
CSIRO-Mk3.6 has a better performance than
HadGEM2-ES. According to previous regression analysis
(Figure 6), the regionally enhanced DMO can be

approximately described by the PDO, AMO, Niño3.4, and
AO climate indexes. So we also replaced the simulated
DMO by the regressed regionally enhanced DMO to
“revise” the simulated SAT in the same way, as shown in
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Figure 9c. There is a fairly good correspondence between
the “regressed hybrid” SAT and “hybrid” SAT.

4 | CONCLUSIONS AND
DISCUSSION

In this study, we emphasized the key role of DMO in the
decadal signal of climate change. By using the EEMD
method to decompose the time series of raw SAT in boreal
cold season over the NH land, we defined the sum of IMFs
C3, C4, and C5 as the DMO, which represents the ICV mod-
ulated components of SAT variability on the decadal to
multi-decadal scales.

The spatial distribution of DMO trend during warming
hiatus revealed two most sensitive regions located in north-
ern Eurasia (Kazakhstan, northwestern Russia, and northeast
China) and northwestern North America (western Canada
and Alaska), with the DMO fell more than 2�C during
2001–2013. Based on these two most sensitive areas, we
extracted the time series of regionally enhanced DMO over
the past century. It had a variation at the period of roughly
11–23 years and appeared a gradually intensified oscillation.
Regression analysis on regionally enhanced DMO using the
PDO, AMO, Niño3.4, and AO illustrated that the DMO over
mid-to-high latitudes in NH was primarily dominated by the
AO, and the order of contribution to the DMO was the AO
(the most), Niño3.4, PDO, and AMO (the least).

The goal of our study on DMO is to shed some light on
future climate prediction, so we also investigated the effect
of DMO on climate model simulations. There is a huge dif-
ference of internal variability between the CMIP5 models
and observations over the past 100 years. Furthermore, the
extracted regionally enhanced DMO is the key for improv-
ing the predictability of SAT over the mid-to-high latitudes
of the NH, as our “hybrid” or “regressed hybrid” SAT
shows, which points out the direction for future climate
model improvement.
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